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ABSTRACT

Optimal missile avoidance by an evader not having information on the

relative state is analysed. This problem is equivalent to the homing of

a missile of known parameters against a randomly maneuvering target. The

objective is to maximize the R.M.S. miss distance by selecting the optimal

frequency of a periodical maneuver with random initial phase. Comparison

to results of missile avoidance with perfect information shows that the

maximized R.M.S. miss distance can reach 60-80% of the optimal deterministic

value.
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1. INTROWUTION

The problem of an airplane evading a homing missile has been formulated

in the past as a deterministic optimal control problem. 1,2,3,' Such formula-

tion implicitly assumes the existence of perfect information on the relative

state (missile position and closing velocity), and missile's parameters.

Practically, perfect information implies that the pilot is allerted that a

missile of known type has been launched against his airplane; the relative

state can be measured and the time of interception can be estimated.

However, in a real environment this condition is not satisfied. There

are several source of information imperfections:

a) Lack of intelligence or identification (parameter uncertainty);

b) Unaccessible state variables (partial observability);

c) Unaccurate state variables (measurement error or noise);

d) Non existent threat warning (no initial conditions).

Consequently, the real missile avoidance problem is of a stochastic

nature. The mathematical formulation of such a problem is strongly dependent

on the available information.

In case of parameter uncertainty or noisy measurements it is possible

to formulate an optimal stochastic control problem, with the R.M.S. miss dis-

tance as a pay-off.5,6 In this paper it is assumed that the evading airplane

has no information on the relative state (including initial conditions), but

missile parameters are known. Analysis of this problem is guided by the re-

sults obtained for deterministic missile avoidance: 1 4 a "bang-bang" type
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(limit load factor) optimal maneuver with a switch function which depends

on the parameters of the problem and the relative state.

Since in the present problem the relative state is unknown the op-

timal maneuver must be random. Three types of random maneuvers are of

interest:

a. Maneuver of limit load factor with random switching time of

Poissonian distribution, called the "Random Telegraph Maneuver" (R.T.M.).

b. Periodical maneuver with equally distributed random starting

time.

c. Periodical maneuver with equally distributed random phase.

The optimal missile avoidance problem can be transformed for each

case to the pr~blem of a missile homing against a randomly maneuvering

target.

The R.M.S. miss distance of a proportionally homing missile against a

target with a random phase sinusoidal maneuver was calculated in the past.7,8

"Random Telegraph Maneuver" was also studied.6, 8 A recent work8 compared

R.T.M. and random periodical maneuvers and indicated that for long flight

times:

(i) A periodical, square wave type maneuver guarantees larger RMS

miss distances than the comparable RTM.

(ii) Periodical maneuvers of random initial phase generate the same

miss distances than a randomly starting maneuver of the same frequency.

__
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Previous works used to analyse homing performance from the missile's

point of view considering random target maneuvers as some given stochastic

input. In the present paper, motivated to enhance aircraft survivability

in situations where relative state information is not available, the em-

phasis is to investigate the characteristics of random maneuvers which

maximize the R.M.S. miss distance. No similar analysis is known in the

existing technical literature. Based on the results of the above men-

tioned recent study, 8 the present analysis concentrates on periodical

target maneuvers with random initial phase and the objective is to de-

termine the optimal frequency and the resulting R.M.S. miss distance as

functions of missile and target parameters.

In Section II the assumptions and the mathematical formulation are

presented. In the sequel the miss distance due to target maneuver is ex-

pressed in a closed form in the complex domain, using adjoint analysis.
,10-11

In Section III the closed form solution is extended to compute R.M.S.

miss distances generated by random stationary target maneuvers and im-

plemented for a periodical maneuver of random initial phase. In Section IV

the optimal maneuver frequency and the resulting R.M.S. miss distance are

computed for unlimited missile acceleration. In Section V effects of

bounded missile acceleration on the optimal frequency and the miss dis-

tance is shown.
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II. MATHEMATICAL FORMULATION

The analysis is based on the following set of assumptions:

1) The missile is guided by proportional navigation using a constant

effective navigation ratio N'.

2) Aircraft trajectory during the evasive maneuver does deviate much

from its initial direction.

3) Missile and target are considered as constant speed point-mass ele-

ments.

4) Missiles are launched in a collision course.

5) Both missile and target perform lateral accelerations perpendicular

to the initial line of sight.

6) The deviation of the trajectory form the reference line of sight can

be decomposed in two perpendicular planes. For the sake of simplicity

only one of these planes is considered and the gravity component in

this plane is neglected.

7) Missile dynamic is taken into account (first order transfer function

with a time constant T) but its acceleration is unbounded.

8) Target lateral acceleration and roll rate are bounded.

9) The missile flight time tf is long compared to its equivalent first

order time constant.

It is believed, based on the experience of similar deterministic

studies, 2,' that these assumptions provide the necessary insight for a real-

istic analysis.



The geometry of the interception for missile launched in a collosion

course (Ass. 4) is defined in Fig. 1. The equations of the linearized

trajectory, based on assumptions 1-6 were developed in previous papers
2' 4

and are not repeated here. This mathematical model is summarized in the

block diagram in Fig. 2, where F(s) is the transfer function of the

guidance loop. In the linearized kinematic model the miss distance is

defined by

mf = Y(tf) im 1YT-yM)  (1)
t + tf

It can be calculated by

t

mf = g(tf t)YT(tldt (2)
0

where g(tft) is the impulse response of the closed loop linear time-

varying dynamic system shown in Fig. 2. Equation (2) generally does not

yield a closed form solution in the time domain. It can be, however,

solved analytically in the complex (Laplace) domain using adjoint ana-

lysis.10' 11

The adjoint of any time-varying linear system can be easily constructed

from the block diagram of the original system observing the following rules:

1) Reverse all signal flow.

2) Redefine branch points as summation junctions and vice versa.

3) All time-invariant elements remain unchanged.

4) Replace t by (tf-ta) in the argument of all time-varying elements.
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5) The input to the adjoint system is a unit impulse 6(ta), whose applica-

tion point corresponds to the output of interest in the original system.

6) The output of each element in the adjoint system represents the output

of interest in the original system, due to a unit impulse disturbance

at the input of the same element.

In the present problem the output of interest is the miss distance due

to target maneuver. In Fig. 3 the block diagram of this adjoint system is

shown.

The impulse response functions of the original and the adjoint systems

respect the following relationship'2

g(tf,t) = ga(ta,O) (3)

with

t t - t (4)
f

Consequently, Eq.(2) can be written as

mf = if ga(ta,O)YT(tf-ta)dta (5)

0

This expression, being a convolution type integral, yields the following

Laplace transform with respect to the adjoint time variable ta

mf(s) = ga(s)YT(S) (6)
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a

From Fig. 3 it is easy to verify that g (s) satisfies the differential

equation

dga (S) - N' IF(s) ga(s) (7)

ds s

The solution of Eq. (7) is

s

The constant of integration can be obtained from the Initial Value Theorem

Lim mf = lim s mf(s) = lim s,ga (s) YT(S) (9)

tao s f0 S -)r 00

a
The miss distance, generated by a unit step target motion at t = 0, i.e.:

YT(S) = I (10)

is equal to a unit displacement. Thus Eq.(9) leads to

lim ga(s) 1 (11)

and consequently

ga (S) =exp{N' F()d (12)

- .. 4s
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Onega(s) is known, the miss distance due to target maneuver is obtained

from Eq.(6) by

m f = L- 1{ga (s)y T (s)} (13)

For integer values of N' and transfer functions of simple form g a(s) can

be expressed in a closed form (see Table 1)

TABLE 1. The function g a(s) for 3 types of transfer functions.

F (s) ga (S)

1 TS N'___

1 + Ts- 11 + 5 N]

(1 [2Ts N exp 2 2N'1
I )2 I r T +zsj

N'a

T aTS

(1 + T s)(1 + 2 S) T,/l+a a-

=, aT2
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III. R.M.S. MISS DISTANCE DUE TO RANDOM STATIONARY TARGET MOTION

The concept of adjoint system is very effective to analyse behavior

of linear systems with stationary stochastic inputs. ,1 The square of

the average miss distance due to some random stationary target motion is

given for long times of flight 7 by

-2 1 ( aY2

lim mf = I (w) Iga(jw)12 dw (14)
t f "+ 0f Fn-o Y

where YT (w) is power spectral density of the target motion.

For a periodical target motion with random initial phase

t)= T I b sin(nwTt + ,) (15)YT ( To n

n=l

the power spectral density is given by

00
k~y (w) y2  7r + (6

2 T b 6 (w-nu) + 6 (w+nT) 

(16)
n=l

where 6 is the Dirac impulse function. Substitution into Eq.(14) yields

2YT0 c 17-2 0 b1 2 Igan 1 2
lir m - b (j T ) (17)

tf 0 n=l

Though theoretically tf has to be infinitely large, the right side
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of Eq.(17) is valid for values of tf exceeding 5-6 guidance time con-

stants. For shorter flight times the ensemble average of the miss dis-

tances does not reach a constant asymptotic value. This short durat-

tion problems are investigated in a separate report.13

For illustration purposes let us apply Eq.(17) for a pure sinusoidal

target maneuver of equally distributed random initial phase

yT(t) = aT sin(wTt + ¢) (18)

1

P1 (B) = (19)

0 elsewhere

and first order missile dynamics. From Table 1 we find

g a() TsN' (20)

double integration of (18) results in

aT
yT(t) = - aT sin(Wt + ¢) (21)

T

and substitution of (20) and (21) into Eq.(17) leads to

2 2 T2 NO

lim (m2)sn =T W~- "T 2  ) (22)
tf f n 4 .



Introducing the normalized frequency

u W (23)

and defining the normalized R.M.S. miss distance for long flight times

M by

-2mf
M2 4r (24)

tf 4 aT T

Eq.(22) is transformed to

-2 1 2N' -4
M l+usin 2 u2N' (25)

For a generalized periodical target maneuver of random phase

YT(t) = aT 1 C sin(n T +) (26)

n=l

the coefficients b in Eq.(15) are determined byn

C
bn 2 n (27)

n WT

For such maneuver M is given by

1 00 2 (nu) 2N,-4 1/2
I- Cn 2 2N' (28)
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IV. MANEUVER OPTIMIZATION

The normalized R.M.S. miss distance for long time of flight M de-

pends on missile guidance parameters (as F(s), NI), on the type of the

periodical target maneuver (characterized by the Fourier coefficients

Cn, n=l,...,) and the normalized frequency u. For any given missile

and target maneuver type there exists an optimal frequency maximizing N.

Three types of random phase periodical target maneuvers, shown in

Fig. 4 are considered:

(i) Sinusoidal maneuver as given in Eq.(18).

(ii) Square wave type maneuver, defined by

yT(t) = aT sign {sin(wTt + €)} (29)

This maneuver assumes that target acceleration can be reversed instant-

aneously implying infinite roll rate. Aircraft roll-rate limitation can

be considered by:

(iii) Truncated sine maneuver, defined as

ATsin(W Tt + 
30

YT(t) = aT sat {AT  T (30)

where

AT = aT/sin(wTtr) (31)

tr being the time required to roll the airplane 90 degrees at maximum
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* roll rate. The Fourier coefficients of the truncated sine maneuver are

Tr sin Tt r tr + . i( 1 t)J

C 4 cos(nw.) ;2kl()

C =0 n =2k k = 1,2,...

The square wave maneuver can be considered as the limit case with

tR 0, yielding for all the odd coefficients

(C' 4 1 (33)

The other limit case is the pure sinusoidal maneuver with t r = T/w

for which (C1 ) sin = 1.

Substituting the expression of normalized frequency u from Eq.(23)

into Eq. (32) yields

C 2 1 [4e + Isin(2u@)
1 T sin(4e ) 2rj

(34)

C cos(nu6 Y) 2

n IT n

with

t
0 r (35)

r T
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The optimal normalized frequency u*, maximizing P, can be obtained

from

-2
dM- 0  (36)
du

or by substitution of (17), (23), (24) and (27)

--- Ian = 0 (37)

n=- nu

It can be shown that the infinite series in Eq.(37) is convergent,

each of its terms is differentiable and the series of the derivatives is

uniformly convergent. Consequently differentiation can be carried out on

each term separately, yielding to

0 2d Iga(n 2nu =0 
(38)

n=l

Due to the uniform convergence, the infinite series can be truncated

to a finite sum with a prescribed negligible error

N

C 2 ga( ) (39)( nu
n=l

For any finite number of terms an algebraic equation is obtained, yielding

a sequence of solutions uN . This sequence converges, for N + , to the

optimal value of normalized frequency u*.



First Order Dynamics

In the example of a pure sinusoidal manner only the first term exists.

Differentiation of Eq.(25) leads to the following expression for u*

u,2 =NI_-2 (40)
sin 2

Substituting (40) into (25) gives the optimal normalized R.M.S. miss dis-

tance for long flight times

(NI-) N1-2' /2

M i = v2 LN'2N} (41)

Detailed numerical analysis of the other type of maneuvers (square

move and truncated sine) shown in Figs. 5 and 6 revealed that:

a) The optimal frequency is practically the same (with 99% of

accuracy) for all periodical maneuvers as given by Eq. (40).

b) The ratio of the optimal RMS miss distances for different types

of periodical maneuvers is equal to the ratio of their first Fourier

coefficient.

These facts can be explained by the "bound pass" property of the

equivalent transfer function ga (s)/s2 which alternates all higher

frequencies. The ratio of the third harmonic to the first one in Eq.(28)

is rather small

M3 C3 N-2 +42 N'/2 (2--I = Ci 3N '  7I- ( < 42),

M1  C1  119)
as shown in Fig. 7.
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As a consequence of this observation the normalized RMS miss distance

can be computed by the simplified formula

/2c1 {N-2) (43

Since in the truncated sine maneuver C1 is the function of e

(see Eq.(32)), the dependence of 9* on this parameter can be directly

investigated as shown in Fig. 6.

Second Order Dynamics

The optimal maneuver frequency was calculated also for missiles of

non oscillatory, second order transfer functions

F a(s) = ( 1+T IS)(+T2s )  (44)

where

11 = a'c2  < a 4 1 (45)

and

.1 + T2 
= (l+a)T2 = T (46)

Results are plotted in Figs. 8 and 9 including a comparison to first

order dynamics. These results reveal that for N' > 4 the optimal

frequency against a second order missile should be lower than predicted

by the first order approximation. For 2 4 N' < 4 there is no significant
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difference in the optimal maneuver frequency. The dependence of the miss

distance on the pole ratio "a" is shown in Fig. 9 for N' = 3, indicating

an increase of about 3 times between a double pole (a=l) and first order

dynamics.

V. EFFECT OF LIMITED MISSILE MANEUVERABILITY

In the previous sections unbounded missile acceleration was assumed

allowing the use of a linear mathematical model. Whenever the real limi-

tations of missile maneuverability is taken into account the system be-

comes non-linear and as a consequence the adjoint analysis is no more valid.

Investigation of non-linear systems with random inputs is generally

performed using "Monte Carlo" methods (an average of very large number

of independent simulations). Since the "brute force" method is rather

expensive and time consuming, it is used only if no more efficient methods

apply.

Recently the method of covariance was extended to non-linear dynamic

system. This new technique called CADET (Covariance Analysis, Describing

function Technique) is described in Ref.14. The main advantage of CADET

is that the stochastic properties of the non-linear system are obtained

in a single computer run. However, in the computational process a

relatively large number of differential equations have to be solved

simultaneously. For a system of order "k", and random periodical maneuver,



-18-

approximated only by the two first terms, the number of equations is

(k+S)(k+4)

CADET 2

For periodical random phase maneuvers the use of CADET may not be

necessary. It was found15 that due to the periodical nature of the

miss distance a very precise ensemble average can be obtained from a small

number (3-5) of simulations. Consequently, the number of differential

equations to be solved are at most

K0 = 5k < KCADET  V k (48)

The results of 5 equally distributed initial phase simulations were com-

pared's to a Monte Carlo analysis of 200 simulations, showing 99% of ac-

curacy.

Results of the investigation (u*,M*) are plotted in Fig. 10 as the

function of the target-missile maneuver ratio defined as

(T)m a
S ,Tma = T (49)

(YM)max M

These results clearly indicate that the effect of limited missile

maneuverability is to lower the optimal frequency and to increase the miss

distance. This effect is due to the deterioration of the effective navi-

gation gain during missile saturation. We can define

N" =G N' (SO)
equ
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G < 1 being the equivalent amplification factor of the non-
equ

linear element. As shown in the previous section, lower value of N'

results in increased miss distance and lower optimal maneuver frequency.

Finally, the results of the stochastic optimization were compared

to the solution of optimal missile avoidance with perfect information. 2

The comparison, shown in Fig. 11, reveals that for the example chosen

(N' = 4) the R.M.S. miss distance can reach 60-80% of the optimal deter-

ministic value.

VI. CONCLUDING REMARKS

In this paper, optimal missile avoidance of an airplane which has

no information on the relative state was investigated. Assuming the

"worst case" of infinite missile maneuverability a linear time varying

stochastic optimization problem was formulated and solved in a closed

form using adjoint analysis. The solution provided the optimal maneuver

frequency and the RMS miss distance for long missile flight times as

functions of missile and aircraft parameters. Taking into account mis-

sile lateral acceleration limits resulted in a non-linear problem re-

quiring numerical analysis.

Based on the periodical properties of the problem, a very efficient

computational scheme could be used, yielding accurate results with a

minimal computational effort. It was shown that in the case of limited
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missile maneuverability, lower optimal maneuver frequency is required and

larger RMS miss distances are obtained.

Results of the stochastical optimization were compared to the optimal

miss distances obtained in deterministic studies. This comparison in-

dicated that the degradation of missile avoidance capability due to im-

perfect information may not be as serious as it could have been estimated.

If the avoidance efficiency could be partially retained in the stochastic

sense even for a total absence of state information, there is a definite

hope that better (and probably satisfactory) performance could be achieved

if partial or noise corrupted state measurements do exist.
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